Tabu-driven quantum neighborhood samplers

Apr 7, 2021·
Charles Moussa
Charles Moussa
,
Hao Wang
,
Henri Calandra
,
Thomas Bäck
,
Vedran Dunjko
· 0 min read
Abstract
Combinatorial optimization is an important application targeted by quantum computing. However, near-term hardware constraints make quantum algorithms unlikely to be competitive when compared to high-performing classical heuristics on large practical problems. One option to achieve advantages with near-term devices is to use them in combination with classical heuristics. In particular, we propose using quantum methods to sample from classically intractable distributions – which is the most probable approach to attain a true provable quantum separation in the near-term – which are used to solve optimization problems faster. We numerically study this enhancement by an adaptation of Tabu Search using the Quantum Approximate Optimization Algorithm (QAOA) as a neighborhood sampler. We show that QAOA provides a flexible tool for exploration-exploitation in such hybrid settings and can provide evidence that it can help in solving problems faster by saving many tabu iterations and achieving better solutions.
Type
Publication
Moussa, C., Wang, H., Calandra, H., Bäck, T., Dunjko, V. (2021). Tabu-Driven Quantum Neighborhood Samplers. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham.